Lagrangian multiforms on Lie groups and non-commuting flows

نویسندگان

چکیده

We describe a variational framework for non-commuting flows, extending the theories of Lagrangian multiforms and pluri-Lagrangian systems, which have gained prominence in recent years as description integrable systems sense multidimensional consistency. In context manifold independent variables, often called multi-time, is Lie group whose bracket structure corresponds to commutation relations between vector fields generating flows. Natural examples are provided by superintegrable case 1-form structures, hierarchies on loop groups 2-forms. As particular we discuss Kepler problem, rational Calogero-Moser system, generalisation Ablowitz-Kaup-Newell-Segur system with view this endeavour first step towards purely approach actions manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

متن کامل

Lagrangian multiforms and multidimensional consistency

We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of ...

متن کامل

Lie Point Symmetries and Commuting Flows for Equations on Lattices

Different symmetry formalisms for difference equations on lattices are reviewed and applied to perform symmetry reduction for both linear and nonlinear partial difference equations. Both Lie point symmetries and generalized symmetries are considered and applied to the discrete heat equation and to the integrable discrete time Toda lattice. Résumé Deux formalismes différents pour étudier les sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2023

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2023.104807